Brought to you by:
Primary Care Physicians Underutilize Nonantibiotic Prophylaxis for Recurrent UTIs Researchers surveyed 40 primary care physicians at one academic medical center and found that 96% of primary care physicians prescribe vaginal estrogen therapy for recurrent UTI prevention. Estrogen deficiency and urinary retention are strong contributors to infection. However, 78% of physicians...
>> Read More2024 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations This latest summary addresses the most recent published resuscitation evidence reviewed by the International Liaison Committee on Resuscitation task force science experts. In addition, the task forces list priority knowledge gaps for further research. Full Access:...
>> Read MoreExcerpted from Pochick K. Evaluation and Management of Patients with Pharyngitis in Urgent Care. Evidence-Based Urgent Care. 2022 October 1;1(7). Reprinted with permission of EB Medicine. Learn more about Evidence-Based Urgent Care and get a free sample issue at https://www.ebmedicine.net/urgent-care-info
Brought to you by EB Medicine
No single component of the history, physical examination, or initial diagnostic testing can reliably exclude acute coronary syndrome (ACS), but various clinical risk scores incorporate this information to identify patients at low risk for ACS or serious short-term outcomes. The use of clinical decision pathways is advised by the 2021 American Heart Association/American College of Cardiology chest pain guideline.1 The goal should be to promptly identify and assess patients presenting with chest pain in order to recognize those who are actively having ACS. Time matters in these patients. Intervention before myocardial damage is the desired outcome; the most commonly used metric is a door-to-balloon time of less than 90 minutes.2 It is reasonable to postpone the comprehensive patient check-in process until an initial assessment has been done, with high-risk patients expedited to a higher level of care. Patients who are identified as low risk can return to the standard check-in process and then undergo a full clinical evaluation.3
History
A focused history should be obtained from all stable patients. Historical features of a patient’s chest pain cannot reliably rule in or rule out ACS but may be associated with a higher or lower likelihood of ACS. A 2015 review that included 58 studies found that pain radiating to both arms, pain similar to prior ischemia, and a change in the pattern of pain over the past 24 hours were the most helpful historical features in predicting ACS. These features had a positive likelihood ratio (LR) ≥2.0 and a 95% confidence interval (CI) excluding 1.0.4 This review also found that pleuritic pain is less likely to be associated with ACS (positive LR, 0.35-0.61; 95% CI excluding 1.0). Using the same criteria, a 2005 review found that chest pain that radiates to the shoulders or arms, pain that is associated with exertion, or pain associated with diaphoresis was most predictive of ACS. Conversely, pain described as sharp or stabbing, pain not associated with exertion, and pain described as pleuritic, positional, or reproducible with palpation (colloquially referred to as “the 3 Ps”) were least predictive.5 Women, older adults, and patients with diabetes are more likely to present with “atypical” symptoms of ACS (e.g., pain outside of the chest, lack of pain, or symptoms such as nausea or dyspnea).6,7
Several landmark studies have shown that patients’ age and gender and their description of symptoms are associated with the presence of clinically significant CAD.8-10 However, these studies examined patients who had undergone invasive angiography, a population that differs from most patients presenting to EDs or UCs with chest pain. A more recent study of patients with chest pain who underwent noninvasive CCTA has suggested that these historical features greatly overestimate the actual prevalence of CAD.11
In general, classic cardiac risk factors (hypertension, hyperlipidemia, diabetes, smoking, and family history of CAD) are not independently predictive of ACS in patients presenting to the ED with chest pain;12,13 however, these classic cardiac risk factors may be more useful in younger patients. A prospective analysis of nearly 11,000 patients found that among those aged <40 years, the presence of zero risk factors had a negative LR of 0.17 for ACS (95% CI, 0.04-0.66), and the presence of 4 or more risk factors had a positive LR of 7.39 (95% CI, 3.09- 17.67).14
Physical Examination
The physical examination in patients with chest pain is often normal, and abnormalities found on examination are often nonspecific for ACS. Hypotension, the presence of a new mitral regurgitation murmur, and the presence of a third heart sound all increase the likelihood of ACS.15 Chest pain that is reproducible on palpation is perhaps the most useful finding in lowering the likelihood of ACS; a systematic review showed that this finding had a LR of 0.28 for ACS (95% CI, 0.14-0.54).16 However, none of these features can be used to reliably rule in or rule out ACS. As such, the physical examination is perhaps more important for assessing overall hemodynamic function and the likelihood of alternative diagnoses of chest pain. For example, the examination findings of oxygen saturation < 95% or unilateral leg swelling are strongly associated with pulmonary embolism.17 A prospective cohort study of 250 patients found that an aortic regurgitation murmur, pulse differential (absence of unilateral carotid or upper extremity pulse), or blood pressure differential >20mmHg between the arms are independent predictors of thoracic aortic dissection. Focal neurologic signs may also suggest dissection but were seen in only 13% of patients in this study.18 A brief dermatologic examination may uncover vesicular lesions suggestive of herpes zoster.
Excerpted from Johnson L. Identifying Urgent Care Patients with Chest Pain Who Are at Low Risk for Acute Coronary Syndromes. Evidence-Based Urgent Care. 2022 November 1;1(8). Reprinted with permission of EB Medicine. Learn more about Evidence-Based Urgent Care and get a free sample issue at https://www.ebmedicine.net/urgent-care-info
References